

Nombre	Descripción	Tipo PLB-PCE	Base	Informe	Modelo
Rescate de depósitos	Rescatar depósitos para garantizar liquidez	PL Entera - Binaria	Financiera	NO	Finanzas

1.1 Enunciado

Nuestra empresa dispone de seis depósitos en distintas entidades financieras con los siguientes importes de rescate a percibir si se mantienen estos en los próximos ejercicios.

(Liquido a percibir miles de €)							
	Año 1	Año 2	Año 3				
Depósito I	15	20	24				
Depósito II	16	18	21				
Depósito III	22	30	36				
Depósito IV	10	20	30				
Depósito V	17	19	22				
Depósito VI	19	25	29				

RESCATE (Líquido a percibir miles de €)

Las necesidades de efectivo de caja según previsiones ascienden a 20, 30 y 35 (miles de euros) en los años 1, 2 y 3, respectivamente.

Se pide:

Determina cómo se pueden maximizar los rescates para dar respuestas a las necesidades financieras previstas.

1.2 Planteamiento matemático

Definimos $x_{ij} = \begin{cases} 1 & \text{si el Depósito i se rescata durante el año j,} \\ 0 & \text{en caso contrario} \end{cases}$ $i = 1, \dots, 6, j = 1, \dots, 3.$

Si llamamos C_{ij} al ingreso derivado del rescate del depósito i durante el año j, entonces la función a maximizar es:

$$\sum_{j=1}^{3} \sum_{i=1}^{6} c_{ij} x_{ij}$$

$$\sum_{i=1}^{6} c_{ij} x_{ij} \ge b_j, \ j = 1, 2, 3$$

$$\sum_{i=1}^{3} r_{ii} \le 1, \ i = 1, ..., 6$$

Los ingresos mínimos que se han de generar durante el trienio propuesto vienen datos por:

Siendo b = (20, 30, 35).

Finalmente, hay que especificar que ningún depósito puede ser rescatado más de una vez:

Por lo tanto, el modelo es el siguiente:

$$\begin{cases} \text{Max.} & \sum_{i=1}^{6} \sum_{j=1}^{3} c_{ij} x_{ij} \\ \text{s.a} & \sum_{i=1}^{6} c_{ij} x_{ij} \geq b_i, \quad j = 1, 2, 3, \\ & \sum_{j=1}^{3} x_{ij} \leq 1, \quad i = 1, \dots, 6, \\ & x_{ij} \in \{0, 1\}, \quad i = 1, \dots, 6. \end{cases}$$

1.3 Planteamiento y Resolución en Excel

1.3.1 Identificación y definición de las Variables de Decisión o Celdas Cambiantes (Changing Cells).

En este caso definimos y planteamos el problema (programamos las celdas) especificando en primer lugar las Variables de Decisión o Celdas Cambiantes (Changing Cells).

nuestro En caso (ver Ilustración 1) serán los rangos binarios B17:D17 - B20:D20 – B23:D23 – B26:D26 – B29:D29 - B32:D32, es decir los distintos rescates de los depósitos en cada ejercicio. Señalar que estas variables serán del tipo binarias. tomando valor 0-1 en el caso de ser rescatadas o no en un determinado ejercicio.

4	А	В	С	D	E			
13	Variables de Decisión	Función (Objetivo					
14	Planteamiento del	Probler	na					
15	Rescate de los depositos							
16		Año 3	Total					
17					0			
18	Depósito I	15	20	24				
19		0	0	0	0			
20					0			
21	Depósito II	16	18	21				
22		0	0	0	0			
23					0			
24	Depósito III	22	30	36				
25		0	0	0	0			
26					0			
27	Depósito IV	10	20	30				
28		0	0	0	0			
29					0			
30	Depósito V	17	19	22				
31		0	0	0	0			
32					0			
33	Depósito VI	19	25	29				
34		0	0	0	0			
35	Total Rescatado	0	0	0	0			
36	Necesidades de Efectivo	20	30	35	85			
37	Diferencial	-20	-30	-35	-85			
Ilustración 1								

1.3.2 Definición y programación de la celda objetivo

Debemos también de identificar la celda objetivo, en nuestro caso será E35, es decir la que cantidad de efectivo máximo a obtener en los periodos derivados de la liquidación o rescate temporal de los depósitos, por tanto se trata de maximizar dicha celda.

Una vaz programa las		А	
oldas minsingles saí	39	Restricciones	
celuas principales asi	40	Todas las variables de deci.	si
como identificada la	41	Limitaciones	
celda objetivo es	42		
conveniente especificar	43	Restricciones	c
las Restricciones	44	Depósito I rescatado 1 vez	
(Constraints Cells).	45	Depósito II rescatado 1 vez	
Las restricciones deben	46	Depósito III rescatado 1 vez	
caer dentro de ciertos	47	Depósito IV rescatado 1 vez	
límites o satisfacer los	48	Depósito V rescatado 1 vez	
valores objetivos. Se	49	Depósito VI rescatado 1 vez	
nueden especificar	50	Rescate Ejercicio 1	
hasta 500 restriacionas	51	Rescate Ejercicio 2	
liasta 500 restricciones	52	Rescate Ejercicio 3	
-dos par cada una de			
las variables de			
decisión.			

1.3.3	Definición y programación de las restricciones, RHS (Right Hand Side)
-------	---

	0	, 0									
	А	В	С	D	E	F					
39	Restricciones										
40	Todas las variables de deci										
41	Limitaciones										
42	Production and	Uso	Disponibil	idad de Re	cursos y	Holgura					
43	Restricciones	Consumo	Restriccion	Side)	ght Hand	(Slack)					
44	Depósito I rescatado 1 vez	0 veces	=	1 veces	E17	1 veces					
45	Depósito II rescatado 1 vez	0 veces	=	1 veces	E20	1 veces					
46	Depósito III rescatado 1 vez	0 veces	=	1 veces	E23	1 veces					
47	Depósito IV rescatado 1 vez	0 veces	=	1 veces	E26	1 veces					
48	Depósito V rescatado 1 vez	0 veces	=	1 veces	E29	1 veces					
49	Depósito VI rescatado 1 vez	0 veces	=	1 veces	E32	1 veces					
50	Rescate Ejercicio 1	0	>=	20	B35	20					
51	Rescate Ejercicio 2	0	>=	30	C35	30					
52	Rescate Ejercicio 3	0	>=	35	D35	35					
	Ilustración 2										

En la Ilustración 2 exponemos las limitaciones, condicionantes o restricciones impuestas.

1.3.4 Programación de los paramentos del cuadro de dialogo Solver

Tomando en consideración la formulación algebraica del problema así como el diseño de la hoja de cálculo y programación de las celdas, pasamos a continuación a programar los parámetros del Solver y que nos permitirá alcanzar nuestro objetivo.

Es <u>t</u> ablecer objetivo:	SES35		1
Para: 💿 <u>M</u> áx (◯ Mín	0	
Combinedo los soldos do un			
Campiando las ceidas de va	inables:	10100-10100-10100-	(D)(22
3D317:3D317;3B320:3D320;	\$D\$25;\$D\$25;\$D\$26;\$D\$26;	20253:2D253;2B232;	30352
Sujeto a las restricciones:			
\$B\$17:\$D\$17 = binario \$B\$20:\$D\$20 = binario \$B\$23:\$D\$27 = binario		*	Agregar
\$B\$29:\$D\$29 = binario \$B\$29:\$D\$29 = binario			<u>C</u> ambiar
\$B\$32:\$D\$32 = binario \$B\$44:\$B\$49 = \$D\$44:\$D\$4 \$B\$50:\$B\$52 > = \$D\$50:\$D!	9 \$52		<u>E</u> liminar
			Restablecer todo
		~	<u>C</u> argar/Guardar
Convertir variables sin r	estricciones en no negativa	s	
Método d <u>e</u> resolución:	GRG Nonlinear	•	O <u>p</u> ciones
Método de resolución			
Seleccione el motor GRG I el motor LP Simplex para p	Nonlinear para problemas d problemas de Solver lineale:	le Solver no lineales 5, y seleccione el mot	suavizados. Seleccione tor Evolutionary para

Ilustración 3

1.3.5 Resolución propuesta

Pulsando el botón Resolver del formulario anterior (Ilustración 3) accedemos a la resolución del problema y en este caso se nos informa que se encontró una solución y se nos ofrece además la posibilidad de disponer de los informes correspondientes asociados al problema.

	Resultados o	le Solver				X
	Solver en toleranci	contró una a. Se cumpl	solución d en todas la	e enteros der as restriccion	ntro de la es.	Informes
	⊙ Cons O <u>R</u> est	ervar solució aurar valores	Responder			
	U Volv <u>e</u> Solve	r al cuadro r	☐ Informes de esq <u>u</u> ema			
	Acept	ar	<u>C</u> ancelar			Gua <u>r</u> dar escenario
	Solver er las restri Es posibl Solver en cuadro de	icontró una icciones. le que exista iccuentra la n e diálogo de	solución de an mejores nejor soluc e opciones	e enteros der soluciones c ión, establez	itro de la f le enteros ca en 0% l	tolerancia. Se cumplen todas . Para asegurarse de que la tolerancia de enteros en el
	_			lustrac	10n 4	
_	С	D	E	F		
	Function (Objetivo				
en	na					
	Año 2	Año 3	Total			
0	0	1	1			
	20	24				
	0	24	24			
1	0	0	1			
	18	21				

			J	lustrad	ció				
	Α	В	C D			Е	F		
13	Variables de Decisión		Función Objetivo						
14	Planteamiento del	na							
15	Rescate de los depositos								
16		Año 1	Año 2	2	Año	3	Total		
17		0		0		1	1		
18	Depósito I	15	20		24				
19		0	0		24		24		
20		1		0		0	1		
21	Depósito II	16	18		21				
22		16	0		0		16		
23		0		1		0	1		
24	Depósito III	22	30		36				
25		0	30		0		30		
26		0		0		1	1		
27	Depósito IV	10	20		30				
28		0	0		30		30		
29		1		0		0	1		
30	Depósito V	17	19		22				
31		17	0		0		17		
32		0		0		1	1		
33	Depósito VI	19	25		29				
34		0	0		29		29		
35	Total Rescatado	33	30		83		146		
36	Necesidades de Efectivo	20	30		35		85		
37	Diferencial	13	0		48		61		
38									
39	Restricciones								
40	Todas las variables de decis	ión deben s	er binar	ias					
41	Limitaciones					_			
42	Restricciones	Uso	Dispon	icci	idad de ones Ri	Ke HS I	Cursos y Bight	Holgura	
43		Consumo		Н	and Si	del		(Slack)	
44	Depósito l rescatado 1 vez	1 veces	=		1 vec	es	E17	0 veces	
45	Depósito II rescatado 1 vez	1 veces	=	_	1 vec	es	E20	0 veces	
46	Depósito III rescatado 1 vez	1 veces	=		1 vec	es	E23	0 veces	
47	Depósito IV rescatado 1 vez	1 veces	=	_	1 vec	es	E26	0 veces	1
48	Depósito V rescatado 1 vez	1 veces	=		1 vec	es	E29	0 veces	2
49	Depósito VI rescatado 1 vez	1 veces	=		1 vec	es	E32	0 veces	1
50	Rescate Ejercicio 1	33	>=		20		B35	-13	
51	Rescate Ejercicio 2	30	>=		30		C35	0	
52	Rescate Ejercicio 3	83	>=		35		D35	-48	

Ilustración 5

La solución óptima, con un beneficio de 146.000 €, es la siguiente distribución en el rescate de depósitos:

- Primer año: Depósitos 2 y 5.
- Segundo año: Depósitos 3.
- Tercer año: Depósitos 1, 4 y 6.